	Q.P. Code: 16HS618									R16					
	Reg.	No:]
		DHART ICA I Se MATH	emes	ter Re	gula	(AU r & S	TON Supp	OMC leme)US) entar	y Ex	amin	ation	is JA	N 2018	
	Time	: 3 hours	6	(Ai	nswer	all Fi	ve Ur	nits 5X	X12=6	0 Mar	ks)	Max.	Mark	s : 60	
							UNI	Г-І							
1	a. b.	Show the Show the		-							ble				6M 6M
								OR							
2	 a. Define Quantifiers and types of Quantifiers with an example. b. Show that S is a valid conclusion from the premises p→q, p→r, ¬(q A r)and(S V p)))	6M 6M						
							UNI	Г-II							
3	 a. Define an equivalence relation? If R be a relation in the set of integers Z defined by R {(x, y): x ∈ Z, y ∈ Z, (x - y) is divisible by 6} then prove that R is an equivalence relation. Define Bijective function with 2 examples 							6M 6M							
								OR							
4	a.	On the set Q of all rational numbers operation * is defined by a*b=a+b-ab. Show that this operation on Q forms a commutative monoid										W	6M		
	b.	Show the	-	-						k multi	plicati	on mod	lulo 6		6M
							UNI	T-III							
5	a.	How ma are allow	•	bers car	be for	rmed u	ising tl	ne digi	ts 1, 3	, 4, 5, 6	5, 8 and	d 9 if no	o repeti	tions	6M
	b.	Out of 9 of 6 boys	girls ar		ys Hov	w man	y diffe	rent co	ommitt	tees cai	n be fo	rmed ea	ach cor	sisting	6M
				6·				OR							
6	a. b.	Out of 80 many stu How ma	dents (i) do not	play of	these	games	. (ii) p	lay onl	y hock	ey but	not foot	ball.		6M

b. How many different license plates are there that involve 1,2 or 3 letters followed by 4 digits 6M

Q.P. Code: 16HS618

R16

UNIT-IV

7	a. b.	a. Solve $a_n = a_{n-1} + 2a_{n-2}$, $n > 2$ with the condition $a_0 = 0$, $a_1 = 1$ b. Solve $a_n - 7 a_{n-1} + 10 a_{n-2} = 4^n$					
		OR OR	6M				
8	a.	Solve the recurrence relation $a_n = a_{n-1} + n(n+1)/2$	6M				
	b.	Solve $a_n - 5 a_{n-1} + 6 a_{n-2} = 2^n$, $n > 2$ with $a_0 = 1$, $a_1 = 1$, using generating function	6M				
		UNIT-V					
9	a.	Explain krushkal's algorithm finds a minimal spanning tree with own graph	6M				
	b.	Explain complete graph and planar graph	6M				
		OR					

10Define the following graph with one suitable examples for each graph
(i) complement graph (ii) subgraph (iii) induced subgraph (iv) spanning subgraph12M

*** END ***